![]() |
Re: Вселенная. В Млечном Пути открыли первую сверхлегкую черную дыру 15:46 01/11/2019 https://aboutspacejornal.net/wp-cont...81-640x403.jpg Наблюдения за одной из крупных звезд на окраинах Млечного Пути помогли ученым обнаружить рядом с ней невидимый спутник. Предположительно, это черная дыра с необычно низкой массой. Результаты наблюдений и их возможное значение для науки авторы описали в статье для научного журнала Science. “Мы не только изобрели новую методику поиска черных дыр, но и открыли потенциально первого представителя нового класса черных дыр низкой массы, о существовании которых астрономы раньше не знали. Ее открытие расскажет нам многое о том, как устроены и возникают подобные объекты, а также то, как они эволюционируют”, – рассказал один из авторов работы Тодд Томпсон, астрофизик из Университета штата Огайо (США). Скрытый текстНаблюдения за вспышками сверхновых и черными дырами показывают, что между самыми тяжелыми пульсарами, вращающимися нейтронными звездами, и самыми легкими черными дырами существует своеобразный “провал”. Иными словами, светила “средней” массы почему-то крайне редко превращаются в черные дыры, и пока ученые не обнаружили ни одного подобного объекта в окружающей нас Вселенной. Это заставило астрофизиков задуматься о том, существуют ли различия в том, как заканчивают жизнь крупные и средние звезды и как эти расхождения могут влиять на процесс формирования черных дыр и нейтронных звезд. Соответственно, открытие первой черной дыры или какого-то другого небесного тела внутри этого “провала” позволит ученым приступить к поискам ответов на эти вопросы. Первые намеки на открытие подобного объекта были получены в конце сентября этого года. Гравитационные обсерватории LIGO и VIRGO “поймали” сигнал от слияния черной дыры необычно малой массы и более крупного объекта. Оно произошло на расстоянии 1,6 миллиарда световых лет от Земли, в одной из далеких и невидимых для нас галактик, которая расположена в созвездии Рака. Проверяя работу новой методики поиска черных дыр и других “невидимых” компактных объектов,Томпсон и его коллеги нашли гораздо более близкий к нам объект такого типа, который в принципе смогут рассмотреть наземные и космические обсерватории нового поколения. “Сирены” черных дыр Идея астрономов опирается на одно простое соображение. Если черная дыра находится в космосе не одна, а в компании одной или большего числа звезд, то ее притяжение будет вызывать особые “качания” в спектре светила. Они будут возникать из-за того, что звезда и черная дыра не стоят на месте, а вращаются друг вокруг друга. Из-за этого светило будет периодически двигаться в сторону наблюдателей на Земле или удаляться от них. Эти сближения и удаления будут сдвигать спектр свечения от звезды в “красную” или “синюю” сторону, подобно тому, как звук от сирены “скорой помощи” кажется пешеходу более высоким в тот момент, когда машина сближается с ним и становится более басовитым по мере ее удаления. Опираясь на эту идею, ученые проанализировали спектры около десяти тысяч звезд, за которыми наблюдали их коллеги в рамках проекта APOGEE, который нацелен на изучение эволюции Галактики. Отобрав несколько сотен звезд, чей спектр периодически менялся “подозрительным” образом, астрономы сопоставили эти замеры с тем, как менялась яркость этих светил в инфракрасном диапазоне. Это позволило им определить размеры, массу и предполагаемую плотность невидимых или малозаметных спутников данных светил. Их внимание привлекла звезда 2MASS J0521, которая расположена в созвездии Возничего на расстоянии в 12 тысяч световых лет от Земли. Яркость этого светила с окраин Галактики резко менялась каждые 88 дней, а скорость его движения вырастала или падала примерно на 3 километра в секунду каждые сутки. Просчитав массу, траекторию движения и размеры его невидимого спутника, ученые пришли к выводу, что имеют дело с крайне необычным объектом – черной дырой, чья масса была всего в 3,3 раза выше, чем у Солнца. Это заметно ниже, чем у всех других известных объектов такого рода, но при этом с запасом выше, чем у всех известных нейтронных звезд. Как надеются астрономы, дальнейшие наблюдения за 2MASS J0521 помогут им подтвердить, что этот объект действительно представляет собой черную дыру, а также изучить возможные обстоятельства его рождения, анализируя свойства этой звездной системы. Их открытие позволит ученым понять, почему подобные сингулярности встречаются невероятно редко. [свернуть] |
Re: Вселенная. Астероид пролетел очень близко к Земле 16:58 01/11/2019 https://aboutspacejornal.net/wp-cont...61-640x346.jpg 31 октября астероид, который к настоящему моменту получил название C0PPEV1, пролетел очень близко к Земле — он находился на расстоянии всего приблизительно в 6 200 километрах от поверхности нашей планеты в момент ближайшего подхода. Астероид был замечен в четверг вечером (по московскому времени) — сначала его детектировал Catalina Sky Survey, располагающийся в Аризоне, а вскоре после этого объект был обнаружен обсерваториями Magdalena Ridge Observatory, находящейся в Нью-Мексико, и Mt. Lemmon Steward Observatory в Аризоне. |
Re: Вселенная. Смотрите, что сделает черная дыра с Землей, используя «калькулятор столкновений» 9:51 02/11/2019 https://aboutspacejornal.net/wp-cont...-750x3751.jpeg Вас когда-то интересовало, что произойдет, если Земля будет поглощена черной дырой (конечно, кроме того, что все погибнут)? Сейчас у вас есть возможность удовлетворить свое любопытство, используя для этого новый «Калькулятор столкновений между черными дырами». Скрытый текстНапример, в результате поглощения нашей планеты выделится 32 204 195 564 497 649 676 480 000 000 000 000 ме***жоуля энергии. Эта цифра примерно в 54 квинтиллиона раз превышает общее ежегодное энергопотребление человечества. А если масса черной дыры составляет 4 миллиона масс Солнца, вливание материи нашей многострадальной Земли приведет к «раздуванию» горизонта событий космического монстра – точки невозврата, по достижении которой ничто, даже свет, не может покинуть границ черной дыры – однако всего лишь на 0,00000000007281 процента! Такая черная дыра будет относиться к классу сверхмассивных черных дыр, будучи близкой по массе к черной дыре Стрелец А*, находящейся в центре нашей с вами галактики Млечный путь. Но что будет, если ввести в калькулятор намного меньшую по размерам черную дыру? Допустим, Земля упала на черную дыру массой в 20 солнечных масс. Тогда «вмятина» будет явно больше в относительном выражении – горизонт событий черной дыры раздвинется на «целых» 0,000014562 процента. В столкновении не обязательно должна участвовать Земля – вы можете ввести массы обоих сталкивающихся тел. Например, столкновение, в котором принимали участие две черные дыры массами по 30 масс Солнца – похожее на одно из столкновений, зарегистрированных при помощи гравитационно-волнового детектора Laser Interferometer Gravitational-Wave Observatory Collaboration – приведет к формированию единой черной дыры массой в 59 масс Солнца. Горизонт событий нового объекта станет на 174,6 километра шире, что в относительном выражении означает увеличение на 97 процентов. [свернуть] |
Re: Вселенная. Наблюдения с Земли подтверждают близлежащую «линзированную» экзопланету 9:23 02/11/2019 https://aboutspacejornal.net/wp-cont...51-640x480.jpg Исследователи, используя телескопы, расположенные по всему миру, подтвердили и охарактеризовали экзопланету, обращающуюся вокруг близлежащей звезды, при помощи метода, называемого «гравитационным микролинзированием». Эта экзопланета имеет массу, близкую к массе Нептуна, однако обращается вокруг звезды, имеющей меньшую массу (и температуру), по сравнению с Солнцем, по орбите радиусом, близким к радиусу орбиты Земли вокруг Солнца. В системах относительно холодных звезд в этой области пространства, по мнению ученых, формируются газовые гиганты. Результаты этого нового исследования указывают на то, что на самом деле в этой области могут быть распространены планеты размером с Нептун. Поскольку эта экзопланета расположена ближе к нам, чем другие экзопланеты, открытые при помощи этого метода, она является перспективной целью для дополнительных наблюдений при помощи мощных современных телескопов, таких как телескоп «Субару». Скрытый текст1 ноября 2017 г. японский астроном-любитель Тадаши Кодзима (Tadashi Kojima) обнаружил за***очный новый объект в направлении созвездия Тельца. Астрономы по всему миру начали дополнительные наблюдения и определили, что объект представляет собой пример редкого явления, называемого гравитационным микролинзированием. Согласно Общей теории относительности Эйнштейна гравитация искажает пространство. Если массивный объект, находящийся на переднем плане, проходит прямо перед объектом, расположенным на заднем плане далеко в космосе, то это искаженное пространство может действовать, подобно линзе, и фокусировать свет, идущий от далекого объекта, временно увеличивая его яркость. В случае объекта, замеченного Кодзимой, звезда, находящаяся на расстоянии 1600 световых лет от нас, прошла перед звездой, расположенной на расстоянии 2600 световых лет от Земли. Изучив изменения яркости линзированного объекта, астрономы выяснили, что в системе звезды, находящейся на переднем плане, лежит экзопланета. Затем команда профессиональных астрономов, возглавляемая Акихико Фукуи (Akihiko Fukui) из Токийского университета, Япония, при помощи 13 различных телескопов, расположенных по всему миру, провела наблюдения этого объекта на протяжении 76 суток и собрала достаточно данных, чтобы определить характеристики системы, в которой находится экзопланета. Родительская звезда имеет массу, составляющую примерно половину от массы Солнца. Экзопланета лежит на орбите радиусом примерно равным радиусу орбиты Земли вокруг Солнца, но имеет массу, примерно на 20 процентов превышающую массу Нептуна, пояснили авторы. [свернуть] |
Re: Вселенная. Может ли новая частица изменить судьбу Вселенной? https://s.hi-news.ru/wp-content/uplo...ne-750x422.jpg Все знают, что Вселенная постоянно расширяется, однако никто не знает, как быстро она это делает. С тех пор, как наше мироздание возникло в результате взрыва крошечного пятнышка, которое буквально за долю секунду превратилось в окружающий нас с вами мир, Вселенная продолжает раздуваться, при этом постоянно ускоряясь с неизвестной нам скоростью. Вопрос о скорости расширения Вселенной заставляет не утихать вечные дебаты ученых, у каждого из которых имеется свое собственное мнение по данному вопросу. Согласно статье, опубликованной на портале livescience.com, на скорость расширения Вселенной может влиять пока еще не открытая частица, обнаружение которой может изменить судьбу всего нашего мироздания. Гипотетическая частица может изменить судьбу Вселенной Что такое аксионы? На сегодняшний день астрономы изобрели уже немалое количество различных хитроумных способов измерения того, что называют постоянной Хаббла, которая, кстати говоря, являет собой скорость расширения Вселенной в настоящее время. Для того, чтобы измерить скорость расширения нашего мироздания, нам необходимо посмотреть на близлежащие сверхновые, оставившие после себя следы из газа и пыли. Существует особый вид сверхновых, обладающих очень специфической яркостью, которые позволяют нам сравнить их сияние с той яркостью, какую они должны иметь на самом деле. Столь оригинальный способ позволяет вычислить не только расстояние до звезды, но и скорость удаления от нас далеких небесных объектов. Таким образом, сложив все кусочки вместе, мы можем вычислить скорость расширения Вселенной. |
Re: Вселенная. В космосе найдены остатки двух «мертвых» сверхновых 15:55 03/11/2019 https://aboutspacejornal.net/wp-cont...nas_-_lr-1.jpg Изучая близлежащую галактику, известную как Малое Магелланово Облако (SMC), ученые из Манчестерского университета обнаружили кое-что интересное: остатки двух сверхновых, огромное облако газа и пыли, оставшееся после взрыва звезды. Если открытие подтвердится, значит астрономы столкнулись с совершенно новым типом сверхновых. По космическим меркам галактика SMC довольно близка к нашей планете. Она от Млечного Пути всего на 200 000 световых лет, а потому в ясные ночи ее можно даже разглядеть невооруженным глазом в южном полушарии Земли. Помимо сверхновых, команда также обнаружила радиосигналы 20 планетарных туманностей, которые ранее наблюдали только оптически. Чтобы обнаружить остатки сверхновых, команда использовала новый радиотелескоп Australian Square Kilometer Array Pathfinder (ASKAP), разработанный CSIRO, федеральным научным агентством Австралии. Он состоит из 36 антенн, а приемники с фазированной решеткой позволяют ему «смотреть» в нескольких направлениях одновременно, «подобно сложному фасеточному глазу насекомого», как гласит веб-сайт. Авторы проекта уверяют, что могут объединить эти данные с результатами наблюдения на оптических, рентгеновских, гамма-и инфракрасных телескопах, что в конечном итоге позволит исследовать близлежащую галактику «с беспрецедентной точностью». |
Re: Вселенная. Хаббл видит не очень одинокую галактику NGC 1706 16:09 03/11/2019 https://aboutspacejornal.net/wp-cont...41-640x320.jpg Галактики могут казаться одинокими, плавающими в одиночестве в огромной, чернильной тьме малонаселенного космоса – но это может быть обманчивым. Этот снимок галактики NGC 1706, полученный космическим телескопом Хаббл НАСА/ЕКА, является хорошим примером этого. NGC 1706 – это спиральная галактика, расположенная на расстоянии около 230 миллионов световых лет в созвездии Золотая Рыба. Известно, что NGC 1706 принадлежит к группе, известной как группа галактик. Как следует из названия – это группа из 50 галактик, которые гравитационно связаны и следовательно относительно близки друг к другу. Около половины известных нам галактик во Вселенной принадлежат к какой-то группе, что делает их невероятно распространенными космическими структурами. Наша домашняя галактика, Млечный Путь, принадлежит к Местной группе, которая также содержит галактику Андромеда, Большое и Малое Магеллановы облака и галактику Треугольника. Группы – самые маленькие из галактических скоплений; другие представляют собой скопления, которые могут включать в себя сотни тысяч галактик, слабо связанных гравитацией, и последующие сверхскопления, которые объединяют многочисленные скопления в единое целое. |
Re: Вселенная. Тайна спутников Сатурна. Ученые готовят миссию к мирам с океанами 9:23 04/11/2019 https://aboutspacejornal.net/wp-cont...о_спутники.jpg У планет-гигантов много спутников. А больше всего их у Сатурна: вместе с недавно открытыми двадцатью — 82. Среди них два мира с океанами, где есть условия для возникновения жизни. О секретах сатурнианской спутниковой системы РИА Новости рассказал Валерий Шематович, заведующий отделом исследований Солнечной системы Института астрономии РАН. Блестящее семейство лун Скрытый текстГазовый гигант Сатурн, шестая планета от Солнца, известен людям с незапамятных времен. О его спутниках говорил еще Галилей, но он принял за них орбитальные кольца — гигантские диски, состоящие из частиц льда. Детально изучили систему Сатурна уже в наше время благодаря миссии “Кассини”, действовавшей в 2004-2017 годах. “Среди планет Солнечной системы спутников больше всего у Сатурна — 82. У Юпитера — 79, десятки у Урана и Нептуна, их открыли космические аппараты “Вояджер“. Это не окончательный результаты, они будут расти по мере совершенствования техники наблюдений”, — говорит Валерий Шематович. У Сатурна два вида спутников: регулярные и нерегулярные. Первые образовались вместе с планетой из сатурнианской части протосолнечной туманности. Их более двадцати, они обращаются по круговым орбитам, многие — сферической формы. “Значит, их вещество прошло стадию дифференциации, и тяжелые элементы опустились к ядру. Это миллиарды лет, следовательно, такие спутники — ровесники планеты”, — поясняет ученый. “Каждый с очень необычными свойствами. Например, на Мимасе есть огромный кратер размером 139 километров, тогда как диаметр самого спутника всего лишь 400 километров. Ясно, что спутник столкнулся с большим астероидом. Как он выжил — непонятно. На Дионе, возможно, есть подповерхностный океан на глубине 100 километров, то есть это третий мир с океаном в системе Сатурна. Рея, второй по величине спутник, может обладать собственной системой колец. На это есть одно косвенное указание, полученное “Кассини“. Имеется там и разреженная атмосфера, как у Дионы и Энцелада“, — продолжает Шематович. В отличие от Юпитера, у которого четыре крупных внутренних луны, у Сатурна большая только одна: Титан. Остальные в несколько раз меньше. По составу это обледенелые глыбы скальных пород. Нерегулярные спутники обращаются по сильно эллиптическим орбитам. Это малые тела неправильной формы, фактически — астероиды, захваченные в разное время полем тяготения Сатурна. Диаметр обычно не превышает десяти километров. Сатурн находится от Земли в девяти астрономических единицах — это огромное расстояние. Разглядеть маленькие тела на окраине его системы довольно сложно даже с нынешними телескопами. Двадцать новых лун, об открытии которых ученые Университета Карнеги (США) объявили 8 октября, диаметром всего пять километров. Вокруг планеты они совершают оборот за два-три года. Сатурн в 95 раз тяжелее Земли, он столь огромен, что его луны, вместе взятые, — капля в море. Невероятные кольца диаметром 250 тысяч километров тоже оказались немассивными. По самым последним оценкам, — чуть меньше половины массы ближайшего к планете регулярного спутника Мимаса. “Между кольцами движутся спутники-пастухи, по форме напоминающие пельмени, с большим ободком по экватору. Ледяные частицы колец оседают на экваторах спутников-пастухов и участвуют в различных волновых процессах”, — добавляет астроном. Метановый мир “Самый интересный спутник Сатурна — Титан. Второй по размерам в Солнечной системе и единственный с плотной атмосферой. Она в полтора раза плотнее, чем на Земле, и тоже состоит из молекулярного азота. Титан окутан постоянной фотохимической дымкой, по сути, смогом, который мешает изучать его телескопами. Поэтому миссия “Кассини” доставила туда спускаемый модуль “Гюйгенс”, и мы впервые увидели его поверхность, измерили параметры атмосферы”, — рассказывает Валерий Шематович. Важную роль при исследовании Титана сыграл радар аппарата “Кассини”, который через облака сканировал рельеф и физические свойства поверхности. Неожиданно выяснилось, что в районе северного полюса есть моря и озера. Только они из метана. Система Сатурна получает в сто раз меньше энергии Солнца, чем Земля. Поэтому все его миры — ледяные. На поверхности Титана порядка минус 170 градусов Цельсия, в жидком состоянии там только углеводороды. Ученые предполагают, что под ледяным панцирем Титана, на глубине порядка ста километров, находится океан жидкой воды. На это указывают некоторые особенности колебаний спутника в его орбитальном движении. “Там есть моря, горы, дюны, правда, не из песка, а из тугоплавких органических веществ. А когда на северном полюсе наступает лето, даже идут дожди из метана. Удивительный мир!” — отмечает ученый. Активные недра Энцелада “Энцелад, как и другие внутренние спутники Сатурна, — очень яркий объект. Он хорошо отражает солнечный свет. Это говорит о том, что его поверхность сложена водяным льдом. Диаметр — около пятисот километров, геологически этот мир должен быть мертвым, в его недрах нет активных процессов, на поверхности не должно ничего меняться. Между тем ученые оценивали ее как молодую, возрастом от пятисот тысяч до нескольких десятков миллионов лет. И это представляло собой за***ку”, — продолжает Шематович. Считалось, что поверхность Энцелада освежается выпадающим на нее снегом из колец и воздействием плазмы из магнитосферы Сатурна. Изначально планировалось всего несколько пролетов “Кассини” мимо спутника с выключенными научными приборами для экономии энергии. “В первом пролете по орбите, который был довольно далеким от луны, на расстоянии порядка тысячи километров, работали только фотокамера и служебный инструмент — магнитометр. Посмотрев его данные, инженеры увидели, что магнитное поле Сатурна возмущается. Значит, с ним взаимодействует плазма — поток заряженных частиц. Откуда он? Подозрение пало на Энцелад. Выходит, его недра активны. Сразу решили поменять программу, изучить этот мир детальнее”, — говорит астроном. В очередном пролете “Кассини” обнаружила над южным полюсом Энцелада мощные гейзеры. Стало понятно: под его ледяной корой скрывается жидкий океан. Анализ состава показал присутствие воды, различных солей, щелочей и органики. Как выяснилось, у Энцелада силикатное ядро — источник тепла за счет гравитационного воздействия планеты при движении спутника по орбите, подпитывающий гидротермальную активность в океане. В гейзерах нашли молекулярный водород, играющий роль поставщика энергии для геохимической системы. У этого океана есть земной аналог — экстремально соленое озеро Моно в Калифорнии, где очень жесткие условия, но все же там живут некоторые бактерии. Таким образом, на Энцеладе неожиданно сошлись три условия возникновения жизни: жидкая вода, разнообразный химический состав океана с органикой и источники энергии — молекулярный водород и гидротермальные источники на поверхности ядра спутника. Однако развитие жизни, какой мы ее знаем, требует длительного времени и стабильности всей системы. Соответственно, ключевой вопрос — когда возник океан. По одной версии, океану на Энцеладе более четырех миллиардов лет. Тепло для него поставляют еще активные за счет радиоактивного распада недра. Проблема в том, что тело небольшое, оно должно было довольно быстро остыть и заледенеть. Чтобы его вновь активизировать, нужно катастрофическое событие, например столкновение с большим астероидом. Если оно произошло давно, жизнь могла успеть зародиться. “Энцелад — самый привлекательный объект для астробиологов. По мере накопления данных мы сможем выбрать между двумя гипотезами, объясняющими время образования океана под поверхностью спутника”, — подчеркивает ученый. Условия жизни в неземных океанах Титан, Энцелад, а также Ганимед и Европа у Юпитера — миры с океанами. Возможно, в Солнечной системе есть и другие. В 2022 году к спутникам Юпитера отправится миссия Европейского космического агентства (ЕКА)JUICE — Jupiter Icy Moon Explorer. Следом НАСА запустит межпланетную станцию к Европе — Europa Clipper. В проекте JUICE Валерий Шематович с коллегами участвуют в качестве поддерживающих ученых для разработки моделей атмосфер спутников. “Мы надеемся, что к 2032 году, когда туда прибудут аппараты, на орбите будет работать космический телескоп СПЕКТР-УФ, разрабатываемый в Институте астрономии РАН. В его программу заложено наблюдение внешних областей Солнечной системы и ледяных спутников в ультрафиолетовом диапазоне”, — рассказывает ученый. Такие наблюдения очень важны при интерпретации измерений космических аппаратов непосредственно у исследуемых миров с океанами. Есть идея слетать к Титану, чтобы изучить возможное наличие там форм жизни, непохожих на земную, где роль кислорода выполняет водород, а роль электролита — метан. А главное — получить информацию о подводном океане. Впрочем, на Энцеладе это проще: там бьют гейзеры и ледяная кора тоньше. По оценкам, на южном полюсе вода находится всего на глубине нескольких километров. Пока совершенно неясно, как туда проникнуть. Для сравнения: бурение четырех километров льда до подледникового озера Восток в Антарктиде заняло два десятка лет. Миссия к Энцеладу — Enceladus Life Finder (ELF) пока только обсуждается. Слишком далеко лететь. “Ученые очень заинтересованы исследовать миры с океанами, потому что это следующие после Марса тела, где есть шансы найти следы жизни, хотя бы в простейших формах”, — заключает Валерий Шематович. [свернуть] |
Re: Вселенная. Новая Щита 2019 на этой неделе 19:30 04/11/2019 https://aboutspacejornal.net/wp-cont...i2019_1501.gif Вчера Новая Щита имела блеск +9,2 зв. вел. Скорее всего, она уже начала ослабевать. Эта оценка блеска была получена в рамках реализации обзора “NewMilkyWay” (NMW) на базе астрофермы “Астроверты”. К сожалению, погода не позволила нам сделать открытие, но в данный момент ПО самостоятельно обнаружила ранее не известный объект. На анимации показаны кадры области вспышки Новой Щита 2019 снятые 18 сентября и 3 ноября 2019 года. Так же этой ночью была снята комета C/2017 T2 (PANSTARRS) на фоне созвездия Возничего. Ее блеск оценен в +12.5 зв. вел., но в мае 2020 года она может достигнуть +6 зв. вел. рядом с Б.Медведицей. |
Re: Вселенная. Вселенная оказалась не плоской. Это проблема для стандартной физики 7:58 05/11/2019 https://aboutspacejornal.net/wp-cont...90006_2048.jpg Три возможные формы Вселенной: эллиптическая (положительная кривизна пространства, согласно текущему исследованию), гиперболическая (отрицательная кривизна пространства) и плоская (нулевая или почти нулевая кривизна пространства, принято считать). В первом случае сумма углов сколь большого треугольника больше 180 градусов, во втором – меньше, а в третьем – равна. Credit: NASA Скрытый текстСамый точный на сегодня анализ анизотропии реликтового излучения, проведенный по данным спутника Европейского космического агентства (ЕКА) «Planck», показал, что Вселенная (имеется ввиду трехмерное пространство) не плоская, а обладает положительной кривизной. Этот результат находится в полном несоответствии не только со всеми предыдущими астрофизическими данными и большинством общепринятых теорий эволюции космоса, но и с инфляционной моделью – стремительным расширением пространства в первые мгновения Большого взрыва. Результаты исследования представлены в журнале Nature Astronomy. «Аномалии всегда играли большую роль в улучшении нашего понимания Вселенной, и обнаруженные нами разногласия указывают на необходимость «написания» нового космологического сценария», – рассказывает Элеонора Ди Валентино, ведущий автор исследования из Манчестерского университета (Великобритания). Параллельные прямые пересекаются Одно из основных предсказаний инфляционной теории, которая описывает эволюцию Вселенной вскоре после Большого взрыва, заключается в том, что она должна быть плоской, то есть мы не можем наблюдательно обнаружить ее кривизну, и на всем ее протяжении пространство можно описать при помощи привычной нам евклидовой геометрии. Например, сумма углов сколь угодно большого треугольника равна 180 градусам, а две параллельные прямые не пересекаются. Предыдущие исследования, основанные на измерениях реликтового излучения спутником НАСА «Wilkinson Microwave Anisotropy Probe», давали результаты, совместимые с этим прогнозом, однако выпущенный в 2018 году набор данных обсерватории «Planck» показал, что Вселенная является замкнутой, а не плоской, с более чем 99-процентным уровнем достоверности. Вселенная не бесконечна Согласно полученным результатам, пространство всего на 4 процента «более изогнуто», чем принято считать. Однако даже этого незначительного отклонения достаточно, чтобы внести существенные сомнения во все остальные существующие наборы данных. Например, Вселенная становится не бесконечной, модель вечной инфляции – несостоятельной, а содержание темных энергии и материи придется пересмотреть. С другой стороны, зная искривленность пространства, мы сможем точно рассчитать размер «невидимого» нам сегодня участка космоса, и, следовательно, всей Вселенной. «В последние годы космологи «скрывали» эти аномалии, списывая их на погрешность. Но теперь их статистическая достоверность настолько велика, что пришло время взглянуть на них без предубеждений. Независимо от того, насколько элегантна, красива, симметрична или естественна ваша теория, последнее слово всегда за экспериментальными данными», – добавил Алессандро Мельхиорри, соавтор исследования из Римского университета (Италия). Авторы отмечают, что, хотя нынешние разногласия указывают на новый космологический сценарий, необнаруженные систематические погрешности все еще могут играть роль. В ближайшие несколько лет новые проекты, такие как «Dark Energy Survey» и «Euclid», предоставят наблюдательные данные, которые могут иметь решающее значение для фальсификации ведущей модели холодной темной материи. [свернуть] |
Re: Вселенная. Новое исследование пролило свет на форму Вселенной Астрономы проанализировали показатели реликтового излучения и выяснили, что с большой вероятностью наша Вселенная представляет собой замкнутый несимметричный шар. https://naked-science.ru/wp-content/...magine-1-4.jpg Измерить форму Вселенной крайне сложно — как минимум из-за огромных расстояний, что отделяют нас от ее границы. За прошедшие века астрономы успели построить десятки гипотез о форме Вселенной, но ни одну из них до сих пор не удалось более-менее достоверно подтвердить. Одна из наиболее общепринятых теорий заключается в том, что Вселенная «плоская». То есть, если послать с Земли пучок фотонов в любом направлении, он никогда не вернется назад. Существует также гипотеза замкнутой Вселенной, которая предполагает, что она представляет собой что-то наподобие шара. Это значит, что если вы пошлете излучение с Земли куда-то в пространство, то рано или поздно оно вернется к вам с другого края, обойдя Вселенную по кругу. Если, конечно, скорость расширения Вселенной не будет выше световой. Новая работа ученых, опубликованная в журнале Nature Astronomy, показывает результаты измерения уровня реликтового излучения. Это излучение, которое возникло впервые примерно 380 тысяч лет после Большого взрыва. Опираясь на данные, полученные космической обсерваторией «Планк», астрономы выяснили, что реликтовое излучение оказывается более сильно гравитационно линзированным, чем должно быть согласно модели «плоской» Вселенной. По словам специалистов, объяснить такую кривизну пространства на 99 процентов может модель замкнутой Вселенной. После обнаружения этого факта команда ученых проанализировала все доказательства гипотезы и показала, что положительная кривизна, наблюдаемая для реликтового излучения, объясняет аномальную амплитуду линзирования. Но в бочке меда есть и ложка дегтя. С моделью замкнутой Вселенной не согласуется, например, измерение постоянной Хаббла — показателя скорости расширения Вселенной. Также модель замкнутой Вселенной не объясняет существование темной энергии — субстанции, ускоряющей расширение пространства-времени. Согласно статье других астрономов, новые данные можно объяснить некорректной работой телескопа. |
Re: Вселенная. У нейтронной звезды нашли магнитные “родинки” 16:09 05/11/2019 https://aboutspacejornal.net/wp-cont...mpression1.jpg Российские ученые нашли у нейтронной звезды GRO J2058+42 очень необычное магнитное поле, в котором существуют своеобразные “родинки” – зоны аномально высокой напряженности. Замеры и выводы ученых опубликовало научное издание Astrophysical Journal Letters, кратко об этом сообщила пресс-служба МФТИ. “Похожие структуры предсказываются теоретически и в случае нейтронных звезд. Это очень здорово – впервые увидеть их в реальных данных. Теоретики теперь получат новые фактические данные для моделирований, а мы – еще один инструмент для исследования параметров нейтронных звезд”, – считает один из авторов работы, заместитель директора ИКИ РАН Александр Лутовинова. Скрытый текстПульсары – это особый вид нейтронных звезд, которые представляют собой остатки взорвавшихся сверхновых, от полюсов которых исходят узкие пучки радиоволн и других форм электромагнитного излучения. Обычно “новорожденные” пульсары вращаются очень быстро, однако постепенно они замедляются, расходуя на излучение энергию вращения. С другой стороны, если пульсар находится в космосе не один, а в компании обычной звезды, он может вновь раскрутиться, если он начнет “воровать” материю у нее. Это происходит из-за того, что большая плотность и масса пульсаров особым образом воздействуют на размеры гравитационной “сферы влияния” их соседа, сжимая ее до размеров, меньших, чем объем самого светила. В результате этого материя звезды, расположенная за ее пределами, в буквальном смысле перетекает на пульсар. Этот процесс не только раскручивает нейтронную звезду, но приводит к рождению мощных вспышек света в рентгеновском диапазоне, порождаемых взаимодействием падающей материи и магнитного поля “мертвого светила”. Яркость тех точек на поверхности пульсаров, которые порождают эти вспышки, превышает общую светимость Солнца в несколько тысяч раз. Лутовинов и его коллеги открыли необычную особенность рентгеновских пульсаров, которая позволяет более детально изучить механизмы их работы, наблюдая за системой GRO J2058+42. Она расположена в созвездии Лебедя на расстоянии почти 30 тысяч световых лет от Земли. “Родимые пятна” звезд Внутри нее, как объясняют Лутовинов и его коллеги, находится рентгеновский пульсар и необычная “нормальная” звезда. Она относится к категории так называемых Be-звезд, которые представляют собой очень горячие и яркие синие гиганты, чья скорость вращения настолько высока, что подобные светила часто “сплющиваются” и приобретают овальную форму. Вдобавок, некоторая доля их внешних оболочек выбрасывается в космос и окружает светила подобно диску или плоской “юбке”. Часть этой материи, как обнаружили ученые еще более полувека назад, периодически попадает в “сферу влияния” этого пульсара и падает на него, порождая вспышки. В отличие от многих других пульсаров, вспышки GRO J2058+42 нельзя предсказать, поэтому ученые сильно заинтересовались подобными событиями и всей этой звездной системой в целом. Недавно российские ученые смогли “поймать” момент зарождения новой вспышки от GRO J2058+42 и оперативно организовать серию наблюдений, используя американский космический телескоп NuSTAR. Данные, которые они в результате получили, раскрыли удивительный феномен. Оказалось, что следы существования мощного магнитного поля в излучении пульсара проявлялись только на определенных фазах вращения “мертвой звезды”, а не были заметны всегда или отсутствовали в принципе, как это характерно для других пульсаров. Это означает, что магнитное поле “мертвой звезды” было крайне неоднородным. “Одним из фундаментальных вопросов образования и эволюции нейтронных звезд является структура их магнитных полей. С одной стороны, в процессе коллапса должна сохраняться дипольная структура звезды-прародительницы, с другой, мы знаем, что даже у нашего Солнца есть локальные неоднородности магнитного поля, что, например, проявляется в солнечных пятнах”, – предполагает Лутовинов. Открытие подобных “родимых пятен” у пульсаров впервые указало на то, что их магнитное поле устроено сложнее, чем ученые считали раньше. Дальнейшие наблюдения за GRO J2058+42 и другими рентгеновскими пульсарами подобного типа, как надеются астрофизики, помогут понять, как долго существуют эти неоднородности и какие процессы внутри нейтронных звезд могут порождать их. [свернуть] |
Re: Вселенная. Большие черные дыры помогли вырасти маленьким 18:10 05/11/2019 https://aboutspacejornal.net/wp-cont...d9a3959f31.jpg Численное моделирование подтвердило реалистичность механизма ускоренного роста черных дыр звездных масс, который связан с влиянием сверхмассивных черных дыр. Согласно этой теории небольшие черные дыры скапливаются в центрах активных галактик, где с высокой вероятностью могут сливаться друг с другом, причем этот процесс может повторяться множество раз. В результате могут появляться объекты, масса которых превышает солнечную в 50 раз и больше, и гравитационные волны от слияния которых уже наблюдаются, а убедительного механизма формирования предложено не было, пишут авторы в журнале Physical Review Letters. Скрытый текстЧерные дыры теоретически могут обладать массой в очень широком диапазоне, но согласно современным представлениям во Вселенной больше всего черных дыр звездных масс, которые тяжелее Солнца до нескольких десятков раз. Вместе с тем считается, что черных дыр тяжелее примерно 40 масс Солнца не должно возникать в процессе взрывов сверхновых, так как звезды с более массивными ядрами должны заканчивать жизнь в виде парно-нестабильной сверхновой, в результате вспышки которой не остается черной дыры. Однако данные гравитационных антенн LIGO и Virgo говорят о существовании более массивных черных дыр. Например, оценочная масса более крупного объекта в слиянии GW170729 составляет примерно 50 масс Солнца. Выходит, либо современные модели звездной эволюции нуждаются в существенной корректировке, либо существует эффективный механизм роста черных дыр, который позволяет им дополнительно набрать десятки солнечных масс за ограниченное время. В 2016 году астрофизики предложили возможный способ такого роста, который заключается в слиянии небольших черных дыр на орбите вокруг сверхмассивной черной дыры в центре активной галактики. Для поддержания активности ядра галактики на центральный объект должно постоянно выпадать вещество, которое движется по спирали, образуя аккреционный диск. По различным оценкам, также в это движение должны быть вовлечены десятки тысяч черных дыр звездных масс. Расчеты физиков показали, что учет разных воздействий, таких как гравитация и трение о газ, должны приводить к миграции попавших в эту область небольших черных дыр на орбиты с полуосью порядка 300 радиусов центральной дыры. Такая «миграционная ловушка» должна приводить к увеличению вероятности слияния, но в этой работе подобных расчетов не приводится. Астрофизики из Венгрии, Индии и США при участии Имре Бартоша (Imre Bartos) из Флоридского университета решили подробно исследовать озвученную ранее концепцию при помощи компьютерного моделирования. Авторы использовали метод Монте-Карло для симуляции различных дисков активных галактик, в которых создавалось разное количество объектов. С течением времени черные дыры выходили на «ловушечные» орбиты, где с высокой вероятностью сливались со следующими попадающими в эту же область. Получающаяся в результате слияния дыра оставалась на этой же орбите и все сильнее вырастала от каждого нового объекта. Авторы оценили вероятности конечных масс черных дыр и пришли к выводу, что 50 масс Солнца рутинно воспроизводятся в их модели, а наиболее тяжелые образцы вырастали вплоть до 80 солнечных масс. Также они пришли к выводу, что вектор собственного вращения получающихся черных дыр оказывается направлен в противоположную сторону относительно вектора орбитального момента. Эта ситуация необычна и не прогнозируется в других предложенных механизмах формирования подобных объектов. Более детальные данные о гравитационных волнах, которые ученые ожидают получить в ближайшие годы, будут достаточно чувствительны, чтобы вычислить величины и направления спинов черных дыр до слияния. Таким образом, если окажется, что у наиболее массивных сливающихся пар моменты собственного и орбитального движения противонаправлены, это станет подтверждением предложенной модели. Ранее ученые не смогли описать лучшего кандидата на парно-нестабильную сверхновую, использовали гравитационное линзирование для измерения вращение сверхмассивных черных дыр и разрешили планетам формироваться вокруг подобных тел. [свернуть] |
Re: Вселенная. Пыльная звездообразующая галактика MAMBO-9 детально исследована 20:49 06/11/2019 https://aboutspacejornal.net/wp-cont...1061847491.jpg Используя большой миллиметровый/субмиллиметровый массив Atacama (ALMA), международная группа астрономов провела детальные наблюдения пыльной звездообразующей галактики MMJ100026.36+021527.9, более известной как MAMBO-9. Исследование, описанное в статье, опубликованной 29 октября arXiv, дает физическую характеристику этой галактики, проливая больше света на ее природу. Пыльные звездообразующие галактики (DSFGs) – это галактики, испытывающие большой всплеск высокоскоростного звездообразования, которые содержат значительное количество пыли или чей оптический/ультрафиолетовый свет может быть значительно затемнен. Они представляют собой наиболее интенсивные звездные вспышки во Вселенной и имеют решающее значение для улучшения нашего понимания формирования и эволюции галактик. Особый интерес представляют DSFGs с высоким красным смещением (более 4.0). Они являются самыми интенсивными звездными яслями во Вселенной и имеют скорость звездообразования (SFR) в сотни или тысячи солнечных масс в год. Однако список известных DSFGs с высоким красным смещением все еще относительно короток, так как поиск новых объектов такого типа крайне затруднен.
|
Re: Вселенная. Вспышка активности метеорного потока альфа-Моноцеротиды 16:54 07/11/2019 https://aboutspacejornal.net/wp-cont...LtWOeUPbms.jpg Через две недели возможна значительная вспышка активности метеорного потока альфа-Моноцеротиды! Питер Дженискенс из института SETI и эксперт по метеорам Эско Лютисен в электронной телеграмме №4692 Центрального бюро астрономических телеграмм сообщают, что 22 ноября в 07:50 МСК (прим. ред. — ошибка расчетов может быть существенна, поэтому рекомендуем наблюдать +/- 5 часов от этого времени!) ожидается значительное повышение активности метеорного потока альфа-Моноцеротиды. Скрытый текстПрошлые расчеты пылевого следа были пересмотрены. Теперь предполагается, что всплески в 1925, 1935, 1985, и 1995 годах были вызваны пылевым следом, сформированным за одно возвращение. Он может принадлежать долгопериодической комете с более коротким периодом обращения, составляющим около 500 лет. Исходя из этого, встреча 2019 года ожидается на солнечной долготе 239,308 градусов (J2000.0), и Земля, как ожидается, пересечет пылевой след немного дальше от Солнца. Разница гелиоцентрических расстояний пылевого следа и земной орбиты в 2019 году будет составлять -0,00016 а.е. Так как существует неуверенность в том, где именно центр следа, то расстояние может варьироваться от -0,00036 до +0,0000 а.е. В зависимости от этого расстояния, максимальные пиковые значения в 2019 году могут быть примерно такими же или превышать те, которые наблюдались в 1995 году, когда зенитное часовое число составило 400-500 метеоров в час. Прошлые встречи с пылевым следом были очень короткими: длительность, когда активность была выше половины максимума (ZHR>200) всего лишь 18 минут! Радиант метеорного потока альфа-Моноцеротиды находится на границе созвездий Малый Пес и Единорог (это рядом с Орионом), и поднимается выше всего над горизонтом после полуночи. Альфа-Моноцеротиды — это быстрые метеоры, их скорость 66 км/сек. Для сравнения: скорость Персеид 59 км/сек. [свернуть] |
Re: Вселенная. Впервые солнечное пятно нового 25-го цикла произвело вспышку! 17:05 07/11/2019 https://aboutspacejornal.net/wp-cont...ZQiWFG5l01.jpg Большие вещи имеют маленькие начала. Через несколько лет наблюдатели смогу оглянуться с высоты следующего солнечного максимума и понять, что все началось 5 ноября 2019 года со слабой солнечной вспышки. По шкале интенсивности солнечных вспышек, данная вспышка класса B1.3 очень слабая. Вспышки B-класса в 1000 раз более слабые, чем интенсивные вспышки класса X. Но эта маленькая вспышка, тем не менее, значительна. Она произошла в активной области №2750 — одном из первых солнечных пятен следующего солнечного цикла. Солнечное пятно №2750 впервые появилось в южном полушарии Солнца 1 ноября, прервав цепочку из 28 дней без пятен, типичных для нынешнего солнечного минимума. |
Re: Вселенная. Новая частица изменяет судьбу Вселенной, считают физики 7:13 08/11/2019 https://aboutspacejornal.net/wp-cont.../02/106041.jpg Астрономы всего мира находятся в некотором замешательстве, поскольку полученные ими данные о скорости расширения Вселенной оказываются весьма противоречивыми. Скрытый текстСо времени рождения нашей Вселенной из крохотной точки с бесконечной плотностью и гравитацией она непрерывно расширяется, однако скорость этого расширения не постоянна – со временем расширение Вселенной ускоряется. Нам известно, что скорость расширения современной Вселенной увеличивается, и для объяснения этого факта ученые приняли, что во Вселенной существует так называемая «темная энергия», отвечающая за ускоряющееся расширение нашего мира. Однако скорость расширения Вселенной до сих пор является дискуссионным вопросом. Значение этой скорости, полученное при наблюдениях близлежащих сверхновых типа Ia (имеющих постоянную светимость, вследствие чего яркость этих вспышек зависит, как правило, лишь от расстояния до них) сильно отличается от значения, полученного на основе изучения реликтового излучения (фонового свечения Вселенной в микроволновом диапазоне, представляющего собой послесвечение Большого взрыва). Поэтому некоторые ученые предполагают, что сама темная энергия изменяется с течением времени. Квантовые физики считают, что всю нашу Вселенную пронизывают так называемые квантовые поля, а материальные частицы являются точечными возмущениями этих полей. Каждой квантовой частице ставится в соответствие собственное поле. С этой точки зрения за***очную темную энергию можно соотнести с энергией квантовых полей в определенной области пространства. Однако расчеты энергии квантовых полей, проведенные на базе теории, на десятки порядков отличаются от оценок количества темной энергии. Но, что если измерения скорости расширения Вселенной являются корректными, и темная энергия действительно изменяется со временем? Тогда это может говорить нам о том, что и сами квантовые поля изменяются с течением времени. В новом исследовании физик-теоретик Массимо Цердонио (Massimo Cerdonio) из Падуанского университета, Италия, рассчитал изменение энергии квантового поля, необходимое для объяснения изменения количества темной энергии. Если некое новое квантовое поле отвечает за изменение количества темной энергии, то существует частица, соответствующая этому квантовому полю. Изменение количества темной энергии, полученное в результате расчета Цердонио, требует определенной массы частицы, и она оказалась близка к массе частицы, уже предлагавшейся ранее учеными – так называемого аксиона. Физики предложили эту гипотетическую частицу для решения проблем, связанных с квантовой интерпретацией сильных ядерных взаимодействий. Эта частица, вероятно, появилась в очень ранней Вселенной, однако «пряталась» от нас, в то время как другие силы и частицы управляли развитием нашего мира. И теперь настала «очередь аксиона», пояснил Цердонио. [свернуть] |
Re: Вселенная. Галактика M101 от телескопов Чандра, Спитцер, GalEx и Хаббл 16:50 08/11/2019 https://aboutspacejornal.net/wp-cont...ugXQGJfkA1.jpg Бoльшaя кpacивaя cпиpaльнaя гaлaктикa M101 былa зaнeceнa в знaмeнитый кaтaлoг Шapля Meccьe oднoй из пocлeдниx, нo этo нe oзнaчaeт, чтo в нeм oнa – oднa из xудшиx. Этa гигaнтcкaя гaлaктикa, дocтигaющaя в диaмeтpe пpимepнo 170 тыcяч cвeтoвыx лeт, пoчти в двa paзa бoльшe нaшeй Гaлaктики Mлeчный Путь. M101 былa oднoй из пepвыx cпиpaльныx тумaннocтeй, кoтopыe в XIX вeкe лopд Pocc нaблюдaл в cвoй бoльшoй тeлecкoп Лeвиaфaн Пapcoнcтaунa. Этa фoтoгpaфия ocтpoвнoй вceлeннoй cмoнтиpoвaнa из изoбpaжeний в paзныx диaпaзoнax элeктpoмaгнитнoгo излучeния, пoлучeнныx в XXI вeкe c пoмoщью кocмичecкиx тeлecкoпoв. Paзличными цвeтaми пoкaзaнo излучeниe oт peнтгeнoвcкoгo дo инфpaкpacнoгo диaпaзoнoв (oт выcoкиx дo низкиx энepгий). Изoбpaжeния были пoлучeны нa Kocмичecкoй oбcepвaтopии Чaндpa (фиoлeтoвый цвeт), тeлecкoпe GalEx для иccлeдoвaния эвoлюции гaлaктик (cиний), кocмичecкoм тeлecкoпe Xaббл (жeлтый) и кocмичecкoм тeлecкoпe Cпитцep (кpacный). Peнтгeнoвcкoe излучeниe пoкaзывaют pacпoлoжeниe гopячeгo гaзa c тeмпepaтуpoй в миллиoны гpaдуcoв, кoтopый oкpужaeт взopвaвшиecя звeзды, двoйныe cиcтeмы c нeйтpoнными звeздaми и чepными дыpaми. Фoтoгpaфии в диaпaзoнax c бoлee низкoй энepгиeй выдeляют звeзды и пыль, oчepчивaющиe peгуляpную cтpуктуpу cпиpaльныx pукaвoв гaлaктики M101. M101 тaкжe извecтнa кaк гaлaктикa “Bepтушкa”, oнa нaxoдитcя в пpeдeлax ceвepнoгo coзвeздия Бoльшoй Meдвeдицы в 25 миллиoнax cвeтoвыx лeт oт нac. |
Re: Вселенная. M42: внутpи тумaннocти Opиoнa 6:50 09/11/2019 https://aboutspacejornal.net/wp-cont...5mxbkMgoI1.jpg Бoльшaя тумaннocть Opиoнa – близкaя к нaм oбшиpнaя oблacть звeздooбpaзoвaния – пoжaлуй, caмaя извecтнaя из вcex acтpoнoмичecкиx тумaннocтeй. Cвeтящийcя гaз тумaннocти oкpужaeт мoлoдыe гopячиe звeзды нa кpaю oгpoмнoгo мeжзвeзднoгo мoлeкуляpнoгo oблaкa вceгo в 1500 cвeтoвыx лeт oт нac. Ha этoм глубoкoм изoбpaжeнии иcкуccтвeнными цвeтaми выдeлeнo излучeниe киcлopoдa и вoдopoдa. Ha нeм xopoшo зaмeтны cлoи и вoлoкнa пыли и гaзa. Бoльшую тумaннocть Opиoнa мoжнo нaйти нeвoopужeнным глaзoм нeдaлeкo oт лeгкo узнaвaeмoгo пoяca из тpex звeзд в знaмeнитoм coзвeздии Opиoнa. Пoмимo яpкoгo мoлoдoгo pacceяннoгo звeзднoгo cкoплeния – Tpaпeции, в тумaннocти Opиoнa нaxoдитcя eщe мнoгo звeздныx яcлeй. B ниx coдepжитcя бoльшoe кoличecтвo вoдopoдa, гopячиx мoлoдыx звeзд, пpoплид и звeздныx джeтoв, выбpacывaющиx вeщecтвo c oгpoмными cкopocтями. Tумaннocть Opиoнa, тaкжe извecтнaя кaк M42, пpocтиpaeтcя нa 40 cвeтoвыx лeт. Oнa pacпoлoжeнa в тoм жe cпиpaльнoм pукaвe нaшeй Гaлaктики, чтo и Coлнцe. |
Re: Вселенная. Tумaннocти Ceвepнaя Aмepикa и Пeликaн 18:43 10/11/2019 https://aboutspacejornal.net/wp-cont...Oc-640x479.jpg Bы видитe знaкoмыe oчepтaния в нeoбычнoм мecтe. Cлeвa нa кapтинкe pacпoлoжeнa эмиccиoннaя тумaннocть, зaнeceннaя в кaтaлoг пoд нoмepoм NGC 7000 и xopoшo извecтнaя зeмным нaблюдaтeлям пoтoму, чтo пo фopмe нaпoминaeт oчepтaния oднoгo из кoнтинeнтoв нaшeй плaнeты: Ceвepную Aмepику. Cпpaвa oт тумaннocти Ceвepнaя Aмepикa нaxoдитcя эмиccиoннaя тумaннocть IC 5070, зa cвoи кoнтуpы нaзвaннaя тумaннocтью Пeликaн. Oбe тумaннocти нaxoдятcя нa paccтoянии 1500 cвeтoвыx лeт oт нac и paздeлeны мeжду coбoй тeмным пылeвым oблaкoм. Ha тaкoм paccтoянии 4-гpaдуcнoe пoлe зpeния этoй фoтoгpaфии oxвaтывaeт oблacть paзмepoм 100 cвeтoвыx лeт. Этoт зaмeчaтeльный кocмичecкий пopтpeт cocтaвлeн из нecкoлькиx cнимкoв в узкoпoлocныx фильтpax, чтoбы выдeлить яpкиe иoнизaциoнныe фpoнты и cилуэты тoнкиx дeтaлeй тeмныx пылeвыx oблaкoв. Узкoпoлocныe фильтpы выдeляют излучeниe aтoмoв вoдopoдa, cepы и киcлopoдa, кoтopыe oкpaшeны в cпeциaльнo пoдoбpaнныe цвeтa. Из тeмнoгo мecтa нa Зeмлe вы мoжeтe увидeть эти тумaннocти в бинoкль. |
Re: Вселенная. Meccьe 45: дoчepи Aтлaca и Плeйoны 15:30 11/11/2019 https://aboutspacejornal.net/wp-cont...slvGCqJYHc.jpg Пpeкpacнoe pacceяннoe звeзднoe cкoплeниe Плeяды, или Ceмь Cecтep, пpoлeтaeт cквoзь кocмичecкoe пылeвoe oблaкo нa paccтoянии в 400 cвeтoвыx лeт, oнo xopoшo извecтнo из-зa cвoeй зaмeчaтeльнoй гoлубoй oтpaжaтeльнoй тумaннocти. Cкoплeниe pacпoлoжeнo нa нoчнoм нeбe в coзвeздии Teльцa и в pукaвe Opиoнa нaшeй Гaлaктики Mлeчный Путь. Звeзды-cecтpы и oблaкo кocмичecкoй пыли нe cвязaны мeжду coбoй, oни cлучaйнo oкaзaлиcь в oднoм мecтe в кocмoce. Koмпaктнaя гpуппa звeзд извecтнa c aнтичныx вpeмeн. Гaлилeo Гaлилeй пepвым зapиcoвaл вид cкoплeния в тeлecкoп co cлaбыми звeздaми, нeвидимыми глaзoм. Шapль Meccьe зaнec cкoплeниe в cвoй знaмeнитый кaтaлoг “нe кoмeт” пoд нoмepoм 45. B гpeчecкoй мифoлoгии Плeяды – ceмь дoчepeй титaнa Aтлaca и мopcкoй нимфы Плeйoны, эти имeнa тaкжe включeны в нaзвaния дeвяти яpчaйшиx звeзд cкoплeния. Этo глубoкoe шиpoкoугoльнoe тeлecкoпичecкoe изoбpaжeниe oxвaтывaeт oблacть cкoплeния Плeяды paзмepoм бoлee 20 cвeтoвыx лeт. |
Re: Вселенная. Ультима Туле переименовали в Аррокот 1:21 13/11/2019 https://aboutspacejornal.net/wp-cont...VEw8i-YPQ1.jpg Объект пояса Койпера (486958) 2014 MU69, который в этом году посетила АМС “Новые Горизонты” и ранее именовавшийся Ультима Туле в честь далёкой северной мифологической страны, получил официально новое имя – Аррокот, что переводится как «небо» с языков алгонкинских племён. Имя Ультима Туле подверглось серьёзному пересмотру после того, как репортер Newsweek указал на то, что германские нацисты использовали это словосочетание для обозначения мифической родины арийцев. 12 ноября НАСА согласно правилам Международного Астрономического союза провело церемонию присвоения MU69 нового официального названия Аррокот (Arrokoth). Название было взято из культуры коренных американцев штата Мэриленд, где находится центр управления полётом АМС “Новые Горизонты” и КТ “Хаббл”, с помощью которого был открыт Аррокот. Многочисленные данные, полученные станцией во время посещения Аррокота, до сих пор переправляются на Землю. Пока что известно, что он имеет странную форму, похожую на пару слипшихся блинов, что указывает на относительно мягкое столкновение двух тел, как механизма его появления. Он также покрыт метановым или азотным льдом, придавая ему красноватый оттенок. Такие объекты, как Аррокот, были строительными блоками планет Солнечной системы, поэтому исследователи надеются, что изучение этого и родственных холодных миров поможет нам понять, как образовались и устроены планеты. |
Re: Вселенная. Астероидный след на фоне Крабовидной туманности 7:35 16/11/2019 https://aboutspacejornal.net/wp-cont...71-640x502.jpg На получаемых обсерваториями снимках нередко остаются следы, оставленные проходящими через их поле зрения объектами. Зачастую ими являются астероиды. В июне этого года команда астрономов и инженеров из ESA запустили волонтерский проект Hubble Asteroid Hunter. Его цель заключается в выявлении астероидных следов на архивных снимках космического телескопа «Хаббл». Их последующий анализ позволяет уточнить орбитальные характеристики уже известных астероидов, а также находить ранее неизвестные малые тела. Скрытый текстВ качестве наглядного примера – фото галактики Андромеда до обработки с многочисленными следами, оставленными самолетами, спутниками и т. д. Всего за 1.5 месяца 1900 волонтеров идентифицировало свыше 300 тысяч следов на 11 тысячах снимках «Хаббла». В их числе было и представленное ниже изображение, сделанное космической обсерваторией в 2005 году. На снимке запечатлена Крабовидная туманность. Крабовидная туманность является одним из самых знаменитых объектов на небе. Она расположена на месте вспышки сверхновой, наблюдавшейся в 1054 году. Туманность состоит из выброшенного в ходе звездного коллапса вещества. В ее центре находится пульсар, вращающийся со скоростью 30 оборотов в секунду. Сложная форма туманности объясняется взаимодействием остатка сверхновой с веществом, выброшенным погибшей звездой до и во время взрыва. Поток испускаемых пульсаром высокоэнергетических частиц врезается в окружающее газовое облако, что приводит к образованию ударных волн, чем-то напоминающих расходящиеся круги на воде. В центральной части изображения Hubble можно увидеть тонкую кривую линию. Это и есть астероидный след. Он оставлен 2001 SE101 — объектом Главного пояса, открытым в рамках обзора LINEAR в 2001 году. [свернуть] |
Re: Вселенная. Орион А в инфракрасном диапазоне 17:42 18/11/2019 https://aboutspacejornal.net/wp-cont...1181630011.jpg Звезды образуются в гигантских облаках газа и пыли, которые пронизывают галактики, такие как Млечный Путь. На этом изображении показано одно такое облако, известное как Орион А, которое было замечено космическими обсерваториями ESA Гершель и Планк. Скрытый текстВ 1350 световых лет от нас Орион А – ближайший к нам звездный питомник в полутяжелом весе. Облако заполнено газом – на самом деле оно содержит так много материала, что оно способно произвести десятки тысяч Солнц. Наряду со своим родным братом, Орионом В, облако образует комплекс молекулярных облаков Ориона, обширный звездообразующий регион в созвездии Ориона, который наиболее заметен на ночном небе в течение зимы в северном полушарии или в течении лета в южном полушарии. Различные цвета, видимые здесь, указывают на свет, излучаемый межзвездными пылинками, смешанными с газом, телескоп Гершель наблюдал за длинноволновыми инфракрасными и субмиллиметровыми волнами, в то время как текстура слабых серых полос, растягивающихся по всему кадру, основана на измерениях телескопа Планка. Это направление поляризованного света, испускаемого пылью, показывает ориентацию магнитного поля. Как видно на изображении, подобно этому, пространство между звездами не пустое, а заполнено прохладным веществом, известным как межзвездная среда (ISM) – смесь газа и пыли, которая часто слипается. Когда эти скопления становятся достаточно плотными, они начинают разрушаться под действием собственной силы тяжести и становятся все горячее, горячее, плотнее и плотнее, пока не зажгут что-то захватывающее: создание новых звезд. Магнетизм является важной составляющей ISM. Магнитные поля пронизывают Вселенную и помогают облакам материи поддерживать тонкий баланс между давлением и гравитацией, что в конечном итоге приводит к рождению звезд. Механизмы, которые противодействуют гравитационному коллапсу звездообразных облаков, остаются несколько неясными, но недавнее исследование показывает, что межзвездные магнитные поля играют важную роль в управлении потоками веществ в ISM и могут быть ключевым игроком в предотвращении межзвездно-облачных коллапсов. Исследование показало, что вещество в ISM связано с окружающим магнитным полем и может двигаться только вдоль его линий, создавая своего рода «конвейерные ленты» из выровненного по полю вещества, как и следовало ожидать от воздействия электромагнитных сил. Когда они взаимодействуют с внешним источником энергии, таким как взрыв звезды, эти потоки вдоль линий магнитного поля сходятся. Процесс создает сжатый карман более высокой плотности, который, по-видимому, перпендикулярен самому полю. По мере того, как все больше и больше материи стекает внутрь, эта область становится все более и более плотной, пока в конечном итоге она не достигнет критической плотности для гравитационного коллапса и не смягчит себя, что приведет к образованию звезды. Данные, составляющие это изображение, были собраны во время наблюдений телескопом Планка на всем небе и «Обзора пояса Гулда» телескопа Гершель. Работая до 2013 года, телескопы Гершель и Планк сыграли важную роль в исследовании холодной и далекой Вселенной, проливая свет на многие космические явления, от образования звезд в нашей галактике Млечный Путь и до истории расширения всей Вселенной. [свернуть] |
Re: Вселенная. Ученые оценили шансы найти обитаемые миры в системе Альфа Центавра 17:46 21/11/2019 https://aboutspacejornal.net/wp-cont...exoplanet1.jpg Астрофизики смоделировали орбитальные параметры экзопланет в ближайшей к нам звездной системе Альфа Центавра AB, и выяснили, что вряд ли эти планеты будут обитаемыми. Результаты опубликованы в журнале Astrophysical Journal. Скрытый текстПримерно половина всех звезд нашей Галактики принадлежит к двойным системам. Американские исследователи из Технологического института Джорджии и НАСА решили выяснить, какими параметрами должны обладать планеты в таких системах, чтобы там могла существовать жизнь. Они провели моделирования на примере ближайшей к нам двойной системы Альфа Центавра AB, где звезда В размером с Солнце и более крупная звезда А вращаются вокруг общего центра на орбитах, расположенных как Солнце и Уран. Ученые рассчитали пределы изменений орбитальных параметров экзопланет в обитаемой зоне вокруг звезды В с учетом влияния звезды А и выяснили, что развитию сложной жизни способствует, главным образом, устойчивость наклона оси вращения планеты. Исследователи начали с того, что сравнили, в каких пределах менялся угол наклона оси у Земли и Марса, и как это повлияло на условия обитания. Для нашей планеты этот параметр в течение всей геологической истории оставался практически постоянным, что обеспечивало стабильность климата и создавало условия для постепенной эволюции биологических видов. И, наоборот, резкие колебания наклона оси Марса стали причиной регулярных смен климата и разрушения атмосферы. Ось вращения Земли находится под небольшим углом к ее орбите, который колеблется от 22,1 до 24,5 градусов с периодичностью 41 тысяча лет. Это колебание называется прецессией. Малая прецессия Земли связана с тем, что положение ее оси стабилизируется благодаря гравитационным связям с крупным спутником — Луной. В противном случае упругие взаимодействия с Меркурием, Венерой, Марсом и Юпитером вызывали бы более существенные отклонения оси, особенно в моменты возникновения резонансов. Ось Марса прецессирует между 10 и 60 градусами каждые два миллиона лет. При наклоне на 10 градусов атмосфера конденсируется на полюсах, создавая ледяные шапки. При 60 градусах ледяной пояс образуется вокруг экватора. “Если бы у нас не было Луны, наклон оси Земли мог бы изменяться примерно на 60 градусов, — приводятся в пресс-релизе института слова руководителя исследования Билли Куорлза (Billy Quarles). — Возможно, тогда Земля выглядела бы как Марс”. Затем исследователи смоделировали орбитальные параметры потенциальной экзо-Земли в пригодных для обитания зонах системы Альфа Центавра. Результат оказался неутешительным. В окрестностях двух главных звезд системы — А и В — пока не обнаружено никаких экзопланет, но скорее всего, они окажутся необитаемыми, так как прецессия их осей будет очень высокой. В более мелкой системе красного карлика Проксима Центавра экзопланета есть —Проксима Центавра b. Но согласно модели, разработанной авторами статьи, у нее слишком сильная прецессия, что исключает ее из числа обитаемых. Результаты исследования указывают на то, что шансы на успех миссии StarShot — нанозонда, который должен отправиться в систему Альфа Центавра в поисках обитаемых планет, невелики. [свернуть] |
Re: Вселенная. Хаббл наблюдает за излучением галактики NGC 3749 14:06 23/11/2019 https://aboutspacejornal.net/wp-cont...1231259301.jpg Это изображение запечатлел космический телескоп Хаббл НАСА/ЕКА. Он обратил свой мощный взгляд на галактику под названием NGC 3749. Когда астрономы исследовали содержимое и составные части галактики где-то во Вселенной, они использовали различные методы и инструменты для этого. Одним из них является распространение входящего спектра света из этой галактики и изучение его свойств. Это делается почти так же, как стеклянная призма разделяет белый свет на составляющие его длины волн, создавая радугу. Охотясь за определенными признаками излучения от различных элементов в спектре света галактики – так называемые линии излучения – или, наоборот, признаки поглощения от других элементов – так называемые линии поглощения – астрономы могут начать изучать то, что может происходить внутри галактики. Если спектр галактики показывает много линий поглощения и мало линий излучения, это говорит о том, что ее звездообразующий материал исчерпан и что ее звезды в основном старые, в то время как противоположное предполагает, что она может разрываться из-за образования новых звезд и интенсивных звездных новорождений. Этот метод, известен как спектроскопия, он может рассказать нам о типе и составе галактики, плотности и температуре любого излучающего газа, скорости образования звезд или о том, какой массивной может быть центральная черная дыра галактики. В то время как не все галактики показывают сильные эмиссионные линии, у NGC 3749 она явно присутствует. Галактика находится на расстоянии более 135 миллионов световых лет и является умеренно светящейся. Галактика использовалась в качестве «контроля» в исследованиях особо активных и светящихся галактик, центры которых известны как активные галактические ядра, которые испускают обильное количество интенсивного излучения. По сравнению с этими активными родственниками, NGC 3749 классифицируется как неактивная галактика и не имеет известных признаков ядерной активности. |
Re: Вселенная. Новая модель поможет спрогнозировать ряд солнечных явлений 10:23 24/11/2019 https://aboutspacejornal.net/wp-cont...Cw-640x640.jpg Международная группа ученых, включающая исследователя из Сколковского института науки и технологий (Сколтеха), разработала модель, описывающую изменения, происходящие в солнечной плазме. Это поможет глубже понять солнечную динамику и даст новые ключи к пониманию и прогнозированию событий космической погоды. Бета (β) плазмы представляет собой важную величину, позволяющую оценить меняющиеся роли плазмы и давления магнитного поля в солнечной атмосфере. Она связана с магнитным полем нашего светила, а также является одним из факторов возникновения солнечных явлений, таких как солнечный ветер, корональные выбросы массы и вспышки; эти явления оказывают непосредственное влияние на космическую погоду. Доктор Дженни Родригес (Jenny Rodriguez) из Космического центра Сколтеха вместе с коллегами из Германии и Бразилии разработали модель для оценки изменений беты плазмы в солнечной атмосфере. В частности, они получили описание беты плазмы в короне Солнца за предыдущие солнечные циклы (примерно за 22 года). Исследователи нашли, что наибольшее влияние на эту величину в ходе обоих проанализированных циклов оказывали солнечные факелы и области спокойного Солнца (quiet Sun regions). Солнечные факелы и QS-области обусловливают изменения магнитного и кинетического давления на высотах, соответствующих солнечной короне. Они могут оказывать прямое влияние на космическую погоду и возможности ее прогнозирования. Эти результаты позволяют по-новому взглянуть на солнечную динамику, пояснили авторы. «Бета плазмы представляет собой очень важную величину для описания солнечной атмосферы. Солнечная атмосфера представляет собой природную лабораторию для изучения физики плазмы; мы можем проанализировать ее динамику и попытаться понять происходящие в ней явления. Мы считаем, что наши находки помогут пополнить растущий багаж знаний человечества о динамике нашего светила и позволят точнее предсказывать космическую погоду», – сказала доктор Родригес. |
Re: Вселенная. Гравитационно-волновая астрономия позволит наблюдать «симфонию черных дыр» 5:51 28/11/2019 https://aboutspacejornal.net/wp-cont...60208-jpg1.jpg Черные дыры являются одними из самых за***очных объектов во Вселенной, и тем не менее они до сих пор ускользают от наблюдений, поскольку их гравитация является настолько мощной, что даже свет не может покинуть их пределов. Чтобы обнаружить в космосе черные дыры астрономы обратились к бурно развивающейся сегодня области науки, называемой гравитационно-волновой астрономией. Скрытый текстГравитационные волны представляют собой искажения, или рябь, пространства-времени, возникающие в результате движения массивных объектов. В 2015 г. астрономы впервые зарегистрировали движение гравитационных волн при помощи детекторов наземной обсерватории Laser Interferometer Gravitational-Wave Observatory (LIGO), расположенной на территории США. В этом случае волны были сформированы при столкновении двух массивных черных дыр, образующих двойную систему. Используя обсерваторию LIGO и другие методы наблюдения, в новом исследовании астрономы хотят нарисовать более полную картину природы черной дыры – в частности, описать черные дыры, относящиеся к малоизученной категории черных дыр промежуточной массы. «Когда я присоединился к команде LIGO, я понял, что те годы, которые я провел, создавая модели черных дыр на основе принципов Общей теории относительности, прошли не зря, и теперь мои результаты могут быть использованы для разработки новой стратегии поиска черных дыр промежуточной массы», – сказал Каран Яни (Karan Jani), астрофизик из Университета Вандербильда, США, и главный автор нового исследования. В своей работе Яни и его коллеги показывают, что эксперимент LIGO, чувствительный к гравитационным волнам относительно высоких частот, и будущая космическая миссия LISA [Laser Interferometer Space Antenna], воспринимающая более низкие гравитационно-волновые частоты, могут быть эффективно использованы совместно для обнаружения черных дыр промежуточной массы. В настоящее время астрономы обнаружили большое число черных дыр звездной массы, возникающих при коллапсе массивных звезд, а также сверхмассивных черных дыр, лежащих в центрах галактик, однако до сих пор ученым не удалось провести надежные наблюдения средних по размеру черных дыр. В этих поисках важно проводить наблюдения гравитационных волн в различных частотных диапазонах – не только в высоком (LIGO), но также и в низком (LISA), что подобно прослушиванию музыки, исполняемой целым многоголосым симфоническим оркестром, вместо одних лишь высоких частот одинокой скрипки, добавляет Яни. [свернуть] |
Re: Вселенная. Найдена рекордно крупная черная дыра звездных масс 18:16 28/11/2019 https://aboutspacejornal.net/wp-cont...91-640x360.jpg Астрономы обнаружили широкую двойную систему из яркой звезды и невидимого массивного объекта. По современным представлениям компаньонов в таком случае может быть только черная дыра, которая должна быть тяжелее Солнца примерно в 68 раз. Это делает ее наиболее крупной из известных представителей группы таких объектов, масса которых сравнима со звездными, пишут авторы в журнале Nature. Черные дыры — это объекты с такой большой гравитацией, что никакое тело не может удалиться из их непосредственной окрестности на бесконечность, даже свет. С точки зрения наблюдения выделяют три основных типа таких объектов: черные дыры звездных масс, промежуточных масс и сверхмассивные. Скрытый текстЭта классификация отражает как разные механизмы формирования, так и разные проявления. В частности, все известные до недавнего времени черные дыр звездных масс (помимо зарегистрированных посредством гравитационных волн) были обнаружены в рентгеновских двойных. В таких системах вещество обычной звезды перетекает на компактный объект, при этом разогреваясь до миллионов градусов и испуская высокоэнергетическое излучение. На данный момент все известные в Млечном Пути черные дыры звездных масс не более чем в 20 раз тяжелее Солнца. Это хорошо согласуется с теорией звездной эволюции, которая описывает рождение таких объектов в результате взрывов сверхновых. Вместе с тем модели предсказывают, что экстремально тяжелые звезды должны заканчивать жизни в виде парно-нестабильных сверхновых, после взрывов которых не остается компактного объекта. Астрономы под руководством Лю Цзифэна (Liu Jifeng) применили новый способ поиска черных дыр и обнаружили в нашей Галактике объект с массой порядка 68 солнечных. Авторы использовали метод лучевых скоростей, которым обычно ищут экзопланеты. Для обнаружения тела с его помощью необходимо фиксировать периодические смещения линий в спектре звезды, по которым можно вычислить орбитальные и физические параметры невидимого компаньона. Поиск проходил в рамках длительной программы наблюдений спектроскопических двойных на китайском телескопе LAMOST. Всего изучалось около 3000 источников в направлении на антицентр Млечного Пути. У одной из звезд в этом поле, LB-1, обнаружились периодические вариации лучевой скорости, которые затем были независимо подтверждены наблюдениями на других телескопах. Точные спектроскопические данные позволили определить параметры звезды с высокой точностью. Температура ее поверхности составляет около 18100 кельвин, логарифм силы тяжести — 3,43, масса — 8,2 солнечных, а расстояние — 4,23 килопарсека. В ее излучении нашли закономерные смещения линий с периодов в 78,3 дня, которые соответствуют амплитуде лучевой скорости в 52,8 километров в секунду. Этих данные недостаточны для определения массы компаньона, так как неизвестен угол наклона плоскости орбиты системы относительно луча зрения. Однако даже в случае прямого угла получается масса в 6 солнечных, что уже однозначно классифицирует объект как черную дыру. Однако ученые показывают, что наблюдаемое от источника свечение в линии Hα не может быть связано с видимой звездой, диском вокруг нее или фоновым объектом, так как ее ширина составляет 300 километров в секунду. Следовательно, это излучение связано с диском вокруг черной дыры, что позволяет независимо определить ее массу, которая соответствует 68 солнечным с ошибками около 12. Это также позволяет определить угол наклонения, который в данном случае оказывается равен 15–18 градусам. Обнаруженный объект исключителен сразу по нескольким параметрам. Во-первых, эта самая тяжелая непосредственно обнаруженная черная дыра звездных масс. Во-вторых, она входит в самую широкую известную двойную с черной дырой в составе, из-за чего не видна как рентгеновский источник. В-третьих, ее масса примерно в два раза превышает предельную начальную массу для формирующихся в результате взрывов сверхновых черных дыр. Ограничение на максимальную массу черной дыры сильно зависит от металличности исходной звезды, то есть от концентрации в ней элементов тяжелее гелия. Однако LB-1 по этому показателю соответствует Солнцу, из чего можно ожидать примерно такой же металличности и у звезды-предшественника обнаруженной черной дыры. В таком случае на момент образования она не должна была быть тяжелее 25 масс Солнца. Авторы предлагают несколько возможных сценариев формирования такого объекта. Эта черная дыра могла возникнуть после попадания дыры с разрешенной массой в крупную звезду примерно в 60 раз тяжелее Солнца. В таком случае значительная доля вещества может оказаться под горизонтом событий. Также такой объект мог образоваться после слияния пары черных дыр, появившихся после взрывов сверхновых. В таком случае изученная система должна была изначально быть тройной с парой очень массивных звезд на близкой орбите. Авторы не исключают, что этот объект теоретически может до сих пор быть очень тесной системой из двух черных дыр с массами около 35 солнечных. Совсем недавно астрономы сообщали о другом рекорде — обнаружении исключительно маленькой черной дыры. Также ученые разрешили планетам формироваться вокруг сверхмассивных черных дыр. О полученном ранее в этом году первом изображении тени черной дыры мы подробно писали в материале «Заглянуть за горизонт». [свернуть] |
Re: Вселенная. B цeнтpe Tpёxдoльнoй тумaннocти 18:59 29/11/2019 https://aboutspacejornal.net/wp-cont...ClcszUFb4s.jpg Oблaкa cвeтящeгocя гaзa и пoлocы тёмнoй пыли — тaкoй выглядит Tpёxдoльнaя тумaннocть, oблacть звeздooбpaзoвaния в coзвeздии Cтpeльцa. Tpи oгpoмныe тёмныe пoлocы пыли, блaгoдapя кoтopым Tpёxдoльнaя тумaннocть и пoлучилa cвoe имя, cxoдятcя в цeнтpe тумaннocти. Cпpaвa видны гpуды нeпpoзpaчнoй пыли, и вcя тумaннocть пpoнизaнa пылeвыми вoлoкнaми. Heдaлeкo oт цeнтpa нaxoдитcя oдинoчнaя мaccивнaя звeздa, кoтopaя являeтcя ocнoвнoй пpичинoй cвeчeния Tpёxдoльнoй тумaннocти. Tpёxдoльнaя тумaннocть, тaкжe извecтнaя пoд нaзвaниeм M20, являeтcя oднoй из caмыx мoлoдыx эмиccиoнныx тумaннocтeй — eё вoзpacт cocтaвляeт вceгo лишь 300 тыcяч лeт. Tумaннocть нaxoдитcя нa paccтoянии oкoлo 9 000 cвeтoвыx лeт, a eё чacть, пoкaзaннaя нa pиcункe, пpocтиpaeтcя нa 10 cвeтoвыx лeт. Этa фoтoгpaфия cocтaвлeнa из бaзoвoгo изoбpaжeния, пoлучeннoгo нaзeмным 8.2-мeтpoвым тeлecкoпoм Cубapу, a дeтaли взяты c дaнныx 2.4-мeтpoвoгo Kocмичecкoгo тeлecкoпa имeни Xaбблa, цвeтoвыe дaнныe пpeдocтaвлeны Mapтинoм Пaфoм, a вcё вмecтe coбpaл и oбpaбoтaл Poбepт Джeндлep. |
Re: Вселенная. "Юнона" передала на Землю новый снимок Юпитера На изображение попало южное полушарие газового гиганта. https://image.zn.ua/media/images/645...019/246458.jpg Межпланетная станция "Юнона", которая на данный момент занимается изучением системы Юпитера, передела на Землю новое изображение газового гиганта. Как сообщает NASA, фотография была получена сразу после сближения с планетой 3 ноября. На снимок попало южное полушарие Юпитера. На нем можно увидеть массивные циклоны возле полюса, а также область хаотических облаков, которая располагается между оранжевой полосой и полярным регионом. В момент получения снимка "Юнона" находилась на расстоянии 104,6 тысячи километров от пика облаков Юпитера. Скрытый текст"Юнона" была запущена 5 августа 2011 года с мыса Канаверал, Флорида (США), она является частью программы New Frontiers . До "Юноны" на орбите Юпитера работал зонд Galileo, но "Юнона" первой в истории будет совершать облет планеты через ее полюса. Аппарат прибыл на орбиту Юпитера 4 июля 2016 года. Он пробудет на орбите планеты еще несколько лет и будет передавать на землю новые снимки. После завершения работы зонд будет уничтожен. [свернуть] |
Re: Вселенная. Ученые ищут «память», оставленную гравитационными волнами 11:20 07/12/2019 https://aboutspacejornal.net/wp-cont...4-650x3661.jpg Гравитационные волны обрушиваются на всю Вселенную как рябь в пространстве-времени, вызванные некоторыми из самых катастрофических событий. Скрытый текстС помощью таких средств, как лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) и Virgo, мы можем теперь обнаружить самые сильные из этих волн, когда они омывают Землю. Но гравитационные волны оставляют после себя «воспоминание» («память») – постоянный изгиб в пространстве-времени – когда они проходят в пространстве. Теперь мы находимся на грани возможности обнаружения того, что позволит нам расширить наше понимание гравитации до предела. Несмотря на то, что ей более века, общая теория относительности Эйнштейна является нашим современным пониманием того, как действует гравитация. С этой точки зрения, пространство и время объединяются в единую структуру, известную как пространство-время. Это пространство-время не просто фиксированная стадия, а она может изгибаться и сгибаться в ответ на действия материи и энергии. Это изгибы пространства-времени продолжают указывать нам, как двигаются гравитационные волны. В общей теории относительности все, от света до ускоряющихся пуль и стартующих космических кораблей, путешествуют по прямым линиям. Но не в случае с гравитационными волнами, так как пространство-время вокруг них искривляется, заставляя их следовать по изогнутым траекториям – подобно попытке пересечь горный перевал по прямой линии. То, что мы называем гравитацией, является результатом всего этого искривления пространства-времени и того факта, что у движущихся объектов нет иного выбора, кроме как следовать изгибам и волнам пространства-времени. Как и любая другая гибкая поверхность, пространство-время не просто изгибается, но и вибрирует. Если вы стоите на батуте, вы будете прогибать батут вниз. Если кто-то попытается пройти по батуту рядом с вами, он почувствует вашу «гравитацию» и будет вынужден следовать по извилистой траектории. Но на достаточно большом расстоянии, а «кто-то» не будет чувствовать вашу гравитацию, но он все равно будет двигаться в вашу сторону по искривленной линии. Но если вы начнете прыгать на батуте, вы будете пропускать волны и дрожь через него и они будут зависеть от вашего движения. Гравитационные волны действуют таким же образом, передавая энергию через рябь в ткани самого пространства-времени. Эта рябь возникает из-за почти всех возможных видов движения, но поскольку гравитация настолько слаба (это самая слабая сила природы), а гравитационные волны еще слабее, только самые энергичные движения будут способны создавать пульсации, способные быть обнаруженными с помощью инструментов здесь, на Земле. До сих пор наши гравитационно-волновые обсерватории LIGO и Virgo обнаружили десятки катастрофических событий, связанных со слияниями массивных черных дыр и нейтронных звезд. Гравитационные волны от этих событий распространяются по всей Вселенной, омывая Землю. Когда они это делают, они очень ненамного (например на расстоянии меньшее ширины атома) перемещают вещи вокруг них. Даже тебя, прямо сейчас сжимают и растягивают гравитационные волны на расстоянии в миллиарды световых лет от Земли. Почти любое движение вызывает генерацию гравитационной волны, от черных дыр, врезающихся друг в друга, до взмаха рукой. Когда гравитационные волны распространяются в пространстве-времени, они становятся источником новых гравитационных волн, которые становятся источником новых гравитационных волн, которые становятся источником новых гравитационных волн и так далее. Каждое новое поколение волн слабее, чем предыдущее, но эффект накапливается в том, что ученые называют «памятью» пространства-времени – постоянное его искажение, оставшееся после проходящей гравитационной волны. Другими словами, когда гравитационные волны накрывают вас, вы не просто растягиваетесь и временно сжимаетесь, вы остаетесь навсегда растянутыми. Поскольку гравитационные волны настолько слабы, что мы еще не нашли никаких доказательств этой «памяти» пространства-времени, но они должны быть там, скрываясь в данных, взятых LIGO и Virgo. Недавно группа астрономов проверила, что нужно, чтобы, наконец, увидеть «память» о гравитационных волнах. Поскольку каждое отдельное обнаружение оставляет только невероятно слабую «память», мы не сможем увидеть такие явления один за другим. Вместо этого нам нужно сложить несколько событий, чтобы собрать доказательства, необходимые для этого обнаружения. А сколько событий нам понадобится? Исследователи предсказывают, что нам нужно будет записать около 2000 отдельных слияний черных дыр, прежде чем мы сможем обнаружить оставшуюся память. Это количество не произойдет в ближайшее время, но следующее поколение обсерваторий, которые как мы надеемся, будут собирать около 10 событий в день, смогут найти эту память в течение года наблюдений. Эта постоянная память пространства-времени должна быть там – если наши прогнозы из общей теории относительности верны. И если мы не найдем ничего после нескольких лет поисков, нам придется пересмотреть наше понимание гравитации и посмотреть, не упустили ли мы еще что-нибудь. [свернуть] |
Re: Вселенная. Выяснены процессы образования звезд в дисках галактик 4:39 09/12/2019 https://aboutspacejornal.net/wp-cont...2d30f6a591.jpg Сотрудники Государственного астрономического института имени П. К. Штернберга МГУ изучили распространение звездообразования в галактических дисках различных типов и нашли связь между возрастом звездного скопления и расстоянием до ближайшей области ионизированного водорода. Результаты нового исследования позволят предсказать, где и когда произойдут вспышки звездообразования в галактиках в будущем. Работа исследователей опубликована в журнале Monthly Notices of the Royal Astronomical Society. Исследование процессов звездообразования важно для понимания процессов и физических явлений в межзвездной среде. Главную роль в ее динамике играет турбулентность. Но в новой работе российских астрономов показано, что в возмущенных несимметричных дисках галактик на всех масштабах пространства, а в правильных симметричных — на относительно малых масштабах заметный вклад вносят и другие физические процессы, такие как звездные ветры и вспышки сверхновых. Ученые из ГАИШ МГУ — Александр Гусев и Елена Шимановская — провели исследование таких дисков, применив новый метод определения скоростей и направлений распространения волны звездообразования. Для этого они измеряли расстояния между молодыми звездными скоплениями и ближайшими к ним областями ионизированного водорода. Часть наблюдений была получена на новом телескопе Кавказской горной обсерватории ГАИШ МГУ. Астрономы обнаружили зависимость возраста звездного скопления от расстояния до ближайшей области ионизированного водорода. Средний возраст звездных скоплений растет с увеличением расстояния до области ионизированного водорода согласно степенному закону. При этом показатель степени оказывается равен 1–1,2 для расстояний 40–200 пк и равен 0,4–0,9 на расстояниях 100–500 пк в галактиках с симметричной морфологией. У галактик с асимметричной структурой диска ученые выявили более сложную и резкую зависимость (показатель степени 1,2 при расстояниях от 40 до 500 пк). Результаты работы подтверждают выводы предыдущих исследований о ведущей роли турбулентности в распространении звездообразования в пространственных масштабах до 500 пк и во временных масштабах до 300 млн лет. На меньших масштабах важную роль кроме турбулентности играют другие физические процессы — звездные ветры и взрывы сверхновых. В масштабе звездных ассоциаций (100–200 пк и менее) скорость распространения звездообразования оказалась почти постоянна и обычно не превышала нескольких километров в секунду. Дальнейшие исследования позволят астрономам предсказывать, где и когда произойдут вспышки звездообразования в галактиках в будущем. |
Re: Вселенная. Процесс образования планет оказался проще, чем считалось ранее 15:35 11/12/2019 https://aboutspacejornal.net/wp-cont...dxJRB1_P1.jpeg Планеты появляются, когда частицы пыли слипаются в протопланетном диске, вращающемся вокруг молодой звезды. Но, достигнув определенного размера, они должны, наоборот, отскакивать друг от друга. Ученые нашли объяснение, почему этого не происходит. Скрытый текстУ теории процесса формирования планет есть одна загвоздка, которую можно назвать «барьером отскока» — он препятствует скоплению частиц пыли, которые, ударяясь друг об друга, разлетаются в стороны. Так будет происходить до тех пор, пока не образуется массивный ком пыли, способный притягивать объекты. Но чтобы такой ком сформировался, требуется как-то преодолеть барьер отскока. Дополнительную «липучесть» частицам может дать электрический заряд, выяснили ученые, опубликовавшие статью в журнале Physics Nature. В ходе эксперимента они встряхивали тысячи мелких стеклянных шариков, которые затем катапультировались на высоту более 100 метров, что должно было имитировать процесс рождения планет из протопланетных дисков. В дисках, состоящих из пыли и газа, частицы будущих планет сталкиваются и слипаются, образуя все более и более крупные комки, пока они не достигают диаметра около одного миллиметра. В этот момент рост комков пыли замедляется, так как они начинают отскакивать друг от друга. Данное поведение не позволяло объяснить, как же формируются планеты. «Должен быть способ получить более крупные частицы», — говорит астрофизик-экспериментатор Тобиас Штайнпилз из Университета Дуйсбург-Эссен в Германии. Поэтому Штейнпилз и его коллеги попытались воссоздать условия, при которых формируются планеты. Вместо протопланетной пыли исследователи использовали стеклянные шарики, каждый диаметром чуть меньше полмиллиметра, которые сталкивались друг с другом. Но эксперименту мешала гравитация Земли. В результате было решено использовать катапульту в Бременской башне высотой 120 метров, расположенной в Германии. Камера с шариками и измерительным оборудованием подбрасывалась вверх, затем падала вниз в течение 90 секунд. Перед броском камера встряхивалась, что имитировало столкновения частиц. Во время столкновений шарики накапливали электрические заряды, отрицательные и положительные. Оказалось, что во время падения шарики образовывали комки, некоторые из которых состояли более чем из тысячи шариков. И все благодаря электрическим зарядам. Результаты эксперимента доказали, «что электростатические силы помогают преодолевать барьер отскока в лабораторных условиях», — комментирует опыт астроном Ричард Бут из Кембриджского университета. Но протопланетные диски состоят из натуральных материалов, а не из стекла. Эксперимент с базальтовыми сферами, которые больше похожи на частицы реального протопланетного диска, показал, что базальтовые шарики заряжаются даже больше, чем стеклянные. Теперь ученым предстоит решить другую проблему теории зарождения планет: почему большие комки частиц не разбиваются, сталкиваясь. [свернуть] |
Re: Вселенная. Галактики NGC 5394 и NGC 5395 9:35 14/12/2019 https://aboutspacejornal.net/wp-cont...2132325281.jpg «Все определяется силами, которые мы не можем контролировать … Люди, предметы или космическая пыль, мы все танцуем под таинственную мелодию, звучащую на расстоянии невидимым волынщиком», – писал Альберт Эйнштейн. Скрытый текстГалактики ведут изящное существование в космическом масштабе времени. На протяжении миллионов лет они могут заниматься сложными танцами, которые создают некоторые из самых изысканных грандиозных замыслов природы. Немногие так очаровательны, как галактический дуэт, известный как NGC 5394/5, иногда называемый Галактикой Герона. На этом снимке, полученном Обсерваторией Gemini Национальной исследовательской лаборатории по оптической и инфракрасной астрономии NSF, показано неотразимое взаимодействие этой пары. Существование Вселенной зависит от взаимодействий – от мельчайших субатомных частиц до самых больших скоплений галактик. В масштабах галактики для раскрытия взаимодействий могут потребоваться миллионы лет, и этот процесс можно увидеть на этом изображении двух галактик, выпущенных сегодня Обсерваторией Gemini. Новое изображение запечатлело медленный танец пары галактик, находящихся на расстоянии около 160 миллионов световых лет, и показывает искорку последующего звездообразования, вызванного их взаимодействием. Астрономы пришли к выводу, что две галактики уже когда-либо сталкивались. Однако галактические столкновения могут быть длительным процессом последовательных гравитационных столкновений, которые со временем могут превратить галактики в экзотические, неузнаваемые формы. Эти галактики, как и во всех галактических столкновениях, кружатся друг вокруг друга, поскольку расстояния между звездами в каждой галактике исключают реальные звездные столкновения, и их общая форма искажается только гравитацией каждой галактики. Одним из побочных продуктов турбулентности, вызванной взаимодействием галактик, является слияние газообразного водорода в области звездообразования. На этом изображении эти звездные питомники показаны в виде красноватых сгустков, разбросанных по кругу в большой галактике (и несколько в меньшей галактике). Также видно пыльное кольцо в силуэте на фоне большой галактики. Подобная кольцевая структура видна на предыдущем изображении из Обсерватории Близнецов, вероятно, в результате другой взаимодействующей пары галактик. Хорошо известная цель для астрономов-любителей, свет от NGC 5394/5 впервые пробудил интерес человечества, когда он был замечен Уильямом Гершелем в 1787 году. Гершель использовал свой гигантский телескоп длиной 20 футов, чтобы обнаружить две галактики в том же году, когда он обнаружил две луны Урана. Многие наблюдатели за звездами сегодня представляют две галактики как Цаплю. В этой интерпретации большая галактика – это тело птицы, а меньшая – ее голова, а ее клюв охотится на похожую, на рыбу фоновую галактику. NGC 5394 и NGC 5395, также известные под общим названием Arp 84 или Галактика Герона, представляют собой взаимодействующие спиральные галактики на расстоянии 160 миллионов световых лет от Земли в созвездии Гончие Псы. Большая галактика NGC 5395 (слева) имеет ширину 140 000 световых лет, а меньшая – NGC 5394 – 90 000 световых лет. [свернуть] |
Re: Вселенная. Потускнение звезды Бетельгейзе может быть предвестием взрыва сверхновой https://www.astronews.ru/news/2019/20191228113236.jpg Вы обратили внимание, что созвездие Ориона – одно из самых знаменитых и часто наблюдаемых созвездий в зимнем небе – выглядит в последнее время несколько необычно? Проблема состоит в том, что звезда, расположенная в верхнем плече охотника, Альфа Ориона, или Бетельгейзе, заметно потускнела и выглядит беспрецедентно тускло для 21-го столетия. В новой научной работе исследователи во главе с Е.Ф. Гуинан (E.F. Guinan) из Университета Вилланова, США, рассуждают о причинах потускнения знаменитой звезды: видимая звездная величина этого источника возросла от +0,5 до +1,5 (чем больше величина, тем менее яркой нам видится звезда), согласно авторам. Скрытый текстВообще говоря, изменение наблюдаемой яркости на одну единицу звездной величины не является чем-то экстремально необычным для переменной звезды, какой является Бетельгейзе. Однако такой глубокий спад светимости звезды заставляет астрономов задуматься о его возможных причинах. Красный гигант массой порядка 12 масс Солнца, находящийся на расстоянии примерно 700 световых лет от нас, оранжево-красная звезда Бетельгейзе была впервые обнаружена астрономом сэром Джоном Гершелем в 1836 г. Физически эта звезда в настоящее время «раздулась» до радиуса в 8 астрономических единиц (1 а.е. равна среднему расстоянию от Земли до Солнца). Если поместить Бетельгейзе в центр Солнечной системы, она поглотила бы всю ее внутреннюю часть, захватив при этом даже Юпитер. Астрономы давно следят за Бетельгейзе, поскольку она является одной из ближайших к нам звезд, готовых взорваться как сверхновые. Мы часто наблюдаем сверхновые в других галактиках, однако еще ни разу в течение всей эпохи телескопов мы не видели сверхновую, происходящую в нашей Галактике: звезда Кеплера, вспыхнувшая в 1604 г. в направлении созвездия Оруженосца, стала последней сверхновой, наблюдаемой внутри Млечного пути, хотя после нее на небе устроила пышное представление сверхновая, вспыхнувшая в 1987 г. в галактике Большое Магелланово Облако. И хотя точно неизвестно, когда именно собирается взорваться как сверхновая звезда Бетельгейзе – это может произойти как через несколько сотен тысяч лет, так и прямо завтра – ученые уверены, что она взорвется как сверхновая II типа (сверхновая с коллапсом ядра). Является ли наблюдаемое в настоящее время потускнение предвестием мощного звездного взрыва? Ответ на этот вопрос пока неизвестен астрономам, но обратить внимание на эту звезду в ночном небе стоит – тем более сейчас, когда представляются отличные возможности для ее наблюдений. [свернуть] |
Re: Вселенная. Массивные черные дыры в карликовых галактиках блуждают на периферии 15:06 06/01/2020 https://aboutspacejornal.net/wp-cont...d_800x4271.jpg Астрономы, работающие над установлением механизмов формирования массивных черных дыр в ранней истории Вселенной, получили новые важные сведения об изучаемых процессах с открытием 13 таких черных дыр в карликовых галактиках, лежащих на расстояниях менее одного миллиарда световых лет от Земли. Скрытый текстЭти карликовые галактики, масса которых более чем в 100 раз меньше массы Млечного пути, являются одними из самых крохотных известных науке галактик, в центрах которых лежат черные дыры. Ученые ожидают, что масса черной дыры, расположенной в такой галактике, составляет в среднем около 400 000 масс Солнца. «Мы надеемся, что изучение этих черных дыр и их родительских галактик поможет нам глубже понять формирование и рост схожих с ними черных дыр в ранней Вселенной. Эти объекты формировались в результате столкновений между галактиками на протяжении миллиардов лет, превращаясь в конечном счете в сверхмассивные черные дыры, массами порядка нескольких миллионов или миллиардов масс Солнца, которые мы в настоящее время наблюдаем в более крупных галактиках», – сказала Эми Рейнс (Amy Reines) из Государственного университета Монтана, США. Рейнс и ее коллеги использовали телескоп VLA для первого обнаружения массивной черной дыры в карликовой галактике в 2011 г. В новой работе Рейнс и ее группа выбрали для наблюдений при помощи обсерватории VLA пул из 111 галактик, представляющих наибольший интерес. Проведенные командой наблюдения показали, что в 13 из исследуемых галактик присутствуют массивные черные дыры, активно поглощающие окружающую их материю. К удивлению исследователей, примерно в половине из этих 13 галактик черные дыры были расположены не в центре галактики, как это обычно бывает в более крупных галактиках, а на периферии. Согласно авторам, это свидетельствует в пользу гипотезы формирования черных дыр в результате объединения центральных массивных компактных объектов при слияниях галактик. В этом случае, согласно компьютерным моделям, примерно половина массивных черных дыр оказывается смещена к периферии галактик, пояснили Рейнс и ее коллеги. [свернуть] |
Re: Вселенная. Удивительный снимок галактики в созвездии Насос 20:01 09/01/2020 https://aboutspacejornal.net/wp-cont..._800x30001.jpg На недавно полученном с помощью «Хаббла» изображении — галактика NGC 3175. Она находится от нас приблизительно в 50 миллионах световых лет, в созвездии Насос. На снимке галактика представляет собой смесь ярких областей светящегося газа, темных полос пыли, яркого ядра и галактических рукавов. Галактика является членом одноименной галактической группы, которую называют близким аналогом Местной группы — гравитационно связанной группы галактик, в которую входит, в частности, Млечный Путь. Группа NGC 3175 включает две крупные спиральные галактики — NGC 3175 и NGC 3137 — и множество менее массивных спиральных галактик и галактик-спутников. Изображение NGC 3175, опубликованное астрономами, составлено из данных наблюдений, проведенных с помощью инструмента «Хаббла» Wide Field Camera 3. |
Re: Вселенная. Pacceяннoe cкoплeниe NGC 290: звёзднaя шкaтулкa дpaгoцeннocтeй 10:57 11/01/2020 https://aboutspacejornal.net/wp-cont...v7Qy5LWas1.jpg Hикaкиe дpaгoцeнныe кaмни нe мoгут cиять тaк яpкo. Toлькo звёзды! Звёзды pacceяннoгo cкoплeния NGC 290 зaмaнчивo cвepкaют paзличными кpacкaми пoдoбнo дpaгoцeнным кaмням в шкaтулкe. Изoбpaжённoe здecь фoтoгeничнoe cкoплeниe нeдaвнo зaпeчaтлeл кocмичecкий тeлecкoп Xaббл. Pacceянныe cкoплeния мoлoжe шapoвыx cкoплeний, coдepжaт мeньшe звёзд, cpeди кoтopыx, oднaкo, знaчитeльнo вышe дoля гoлубыx звёзд. NGC 290 нaxoдитcя нa paccтoянии oкoлo 200 000 cвeтoвыx лeт oт нac в coceднeй c нaми гaлaктикe Maлoe Maгeллaнoвo Oблaкo. Этo pacceяннoe cкoплeниe coдepжит в ceбe coтни звёзд, eгo пoпepeчник cocтaвляeт 65 cвeтoвыx лeт. NGC 290 вмecтe c дpугими pacceянными cкoплeниями пpeдcтaвляeт coбoй oтличную лaбopaтopию для иccлeдoвaния эвoлюции звёзд paзличныx мacc, пocкoльку вce oни poдилиcь в oднo вpeмя. |
Re: Вселенная. Марсоход Curiosity. Sols 2645-2646. Впадина на холме https://aboutspacejornal.net/wp-cont...M_-640x640.jpg 18:05 15/01/2020 Спускаясь с холма Western Butte, Curiosity встретил странную впадину на своем пути. На изображениях с орбиты это выглядит так, как будто кто-то нарисовал толстую прямую линию темным маркером. Мы решили, что стоит остановиться для более детального изучения. На выходных Curiosity проехал вниз и припарковался рядом с объектом, который мы назвали «Balgy». Основное событие в сегодняшнем плане – большое стерео от Mastcam. Мы также сделаем снимки слоистой породы под названием «Baljaffray», и проведем стандартный набор наблюдений с помощью приборов MAHLI и APXS объекта “Kennedys Pass”. После этого Curiosity завершит спуск с холма Western Butte и будет продвигаться на юг. |
Часовой пояс GMT +3, время: 05:41. |
Powered by vBulletin® - Перевод: zCarot